)$($ %&’ “#$ !

A NEW PROBLEM AS CONSUMER ADJACENCY PROBLEM (CAP)
AND A HEURISTIC ALGORITHM TO SOLVE IT; WITH DISCUSSION ABOUT ITS APPLICATION TO RANK PROJECT RISKS

S.M.Seyedhoseini, S. Noori, M. Hatefi & H. Ghadirian

Department of Industrial Engineering, Iran University of Science & Technology, seyedhoseini@yahoo.com, snoori@iust.ac.ir, hatefima@yahoo.com

Abstract: This paper, introduces a new problem in the field of combinatorial problems as Consumers Adjacency Problem (CAP). Assume a set of resources with specific utility values. Also assume a set of consumers that are common in the resources. Each of packing of the consumers is one of the solution space points. In a given packing, if whole consumers of a given resource are continuous adjacent, the utility value of the resource adds to the objective function. It is desired to determine the suitable pack the consumers in order to have the maximum sum of utility value of resources. To the one-dimensional problem, in this paper, a formulation based on the mathematical programming is provided and a heuristic solving method is introduced. Also, as a useful
application, project risk ranking by CAP is discussed.

! ” # $ %& ‘( )* +,
1268732040128

Downloaded from ijiepm.iust.ac.ir at 14:23 IRST on Saturday November 4th 2017

Downloaded from ijiepm.iust.ac.ir at 14:23 IRST on Saturday November 4th 2017

$- . &

!” #$% & ‘(!) :
&*% 5*0 .4 ‘ ‘”+, ‘$ – / !0 !1 !2 3 &*% .!’ ‘< = !0 .’ 789 ;!9, 6 3 !1 !2 !”
C*) D$!8 = / ! .> ? @A B / !1< !” 3 ) EA 3( ‘$ – 4 3F$ #$% 7!% / 9G 6 D$!8 3( / !” !” ! ‘( ‘< = I) > )(& 0 .!’ 7$HA 0 .4 I k ) ‘ !” #$% / .! 7$HA 0 3 ) <* – !9,
M L ! <9 ‘<<) $ 74 ‘K H! C!A I / J ! ‘4$ !KL
() ! 789 ’11= O ! * / & 5*0 .!’ N!B .4 0P Q!,) 7R$!G 0/

7R$!G 0/ () !” #$% ‘(!) :

#./)/. :,- *+ #/2/.) :0-1+ *+
seyedhoseini@yahoo.com

hatefima@yahoo.com ! ” #$ “#$ !
3 456 4’+7 4 & 8- 95; 456 5; & 5;)#
G1 ∪ ∪ ∪ ∪GG……. Gn = R (g)

#$% 0 7 !” > !2 : .` ‘ #$% 1 = 4 = !1< 1 / .9 0 ? @A e *0 #$% 01 #$% 1 / .4 I k ) ‘ CAP #$% 0 7 !” C*) = ‘!A > )(& I k #$% *0 2×k !hL 7 !” !0
$ $ / )’ !” iV CAP .4 94 P
.4 I 07 !” C*) 4 ‘! !0 I / / / * ! .4 ‘ ? @A B / 74 7 , W <4 * ? $ n=5 I / I / CAP ? >G <4 B*0 .>
!” *0 / ) 7 !” $ H .4 ‘ P #$% 7 !” $ 07

22830634536

()
()
n=5 CAP .

C*) (grid) ‘%!B4 <(4 !0 I $ / 5*0 * $ X <4 .> ? @A B 0 7 !” !0 I $ .> 74 n=7 !
*0 7 !” j ) ‘ !hL 7 !”
. 94 P #$%
O)!) C7 $ C C2 07!” l kX <4 K `*I) .4 ‘ $% 7 !” = $ $ 2×k !hL 7 !” !0 CAP I k /
EA mL( lB& .>4 0P P #$% *0 .! ‘ 9 ‘(!) 7! CAP

1268732040128

Downloaded from ijiepm.iust.ac.ir at 14:23 IRST on Saturday November 4th 2017

Downloaded from ijiepm.iust.ac.ir at 14:23 IRST on Saturday November 4th 2017

(?) (l)
n=7 CAP .

.
N!B ‘8U9+ #%) $ >IT 7!$ 0S= .4 ‘ 3 >$V M !’ ‘””+) 07L ‘U !9* ! < 9
* ! .[W] 4 ‘ ‘(!) 4 ‘ N!B ‘8U9+ /* 0H &*% O)! , ! %9 ‘(!) )’ 0I &*% 5*0 .> 7R$!G 0/ () M ! * ‘ ! &*% $ *L H ! 7L !1 * .4 ‘ ‘(!) [X] ! ‘ !F M 0 [Z *I 9 0 [Y] = $ -! $ @A / C\F = $ -! ! ‘( 0 ‘$!
‘ = G $ @A $ #IK * 0
.4 #$% & ‘(!) ‘& N!6 C$ S+ .! ‘ N!B(CAP) !” .!G ‘ M >V) ‘8I) $ M 4 N!B >U& ‘)4 4 94 )’ CAP ‘0! C S+ ! * / & H C= S+ .4 0P () J ! CAP 789 ’11= O H I 0S+ .4 0P Q!,) 7R$!G 0 / H ! OF I / J O)!)
6 ! _9 UV) $ H%) $ L <9 `91 ‘K . 9A a”9P

.
!2 > R1,R2,,Rm3( m 4 R &*% b+, ‘$ – 3 / !0 6 !1 5*0 .4 ‘ (∀i =1,2,3,….,m) Wi ‘8 !c $
> C1,C2,,Cn 7 !” n 4 C &*%
3 I) 7 !” !0 6 !1 !2 C i 3( ‘0 7 !” &*% . ‘ 789 [
‘ S* (∀i =1,2,3,….,m) Bi ‘ 789
C j 7 !” 789 ‘I &*% 5*0 .`0
$ 7 S* (∀j =1,2,3,….,n)G j 4 ‘
.`!fG ‘ (X) $ (W) d $ e()

G j ⊆ R ∀ =j1,2,3,…,n (W)

!
.! %9 ‘8U9+ , `9 !c $ `9 6 )’ CAP >V) ! ‘ !u ‘U ‘P! u 74 !u 0 * > !u F .>P!G M ‘P! < > 74 789 CAP I /
. `*I) H !9, I M )’

/ >! C2 !<$ :3# “/ # I9 $ .> 74 / >! M!A 4 N!B m&
$ ‘*) 0/ HM 0/ ‘4 4 M!A J!9 $ SG > $ 0/ ‘1+G (‘8 ‘* ! 7 I / HM A .[j]4 ‘ 0/ M !9* (0″+,) / 0*G ‘8 $ I) ! 0*G 4 ‘ M !v $ / J*9L 789 0/ () > $ / !0 ‘( >*0 0/ / ‘1+G A O)!) ) 4’ ‘4$ & CAP !KL .4 !9, ) !9*
$ ‘ ,G 0/ () ! O $ 7 .!G’ K Q!,) I S+

‘)\ ) > !F D!A :4*5#/ ‘ # \Z h) 0 w$! #\ ) ‘I ! .4 ‘* C 3( !0 4 b+, $ (1 $ #!*I) 0L$
0!8 S0 ! ) ‘ CAP 0 ‘ w$! ) .! %9 ‘( ‘* #\ ) $ 3

-! 0 ‘$! J :6*7 0 8# !0 ! ‘9,G M $!G ‘6 I $ ‘ b+, !0 IBF H 4 ‘ L
! 0 ! O)! >% .4 . ‘ G ! CAP $ > -! ‘ ‘$!

!2 74$!A :9 ; ;< 1 ‘=> # aP > .* (& x ! > !F !1 $ 9A! ‘ ‘0 *V ! > $ ! CAP 789 .0 V) !1 x
!” x $ !0 0! $ 3 0*V )’ .>A! !2 7

Risk Management Process (RMP)
Risk measures
Facility layout problem
1268732040128

Downloaded from ijiepm.iust.ac.ir at 14:23 IRST on Saturday November 4th 2017

Downloaded from ijiepm.iust.ac.ir at 14:23 IRST on Saturday November 4th 2017

Strip
Knapsack problem
Traveling Sale-man Problem (TSP)
#$% 1 / : !”# $%& ‘ ()*+ D$!8 3( / ’07 !” C*) 7 !0 D$!8 94 !F `0 >( ‘)$% ’19G ‘ 789 #T !c $ > 9G f 3( !” ` 4 D!A Jh ! .`’ f1 !” B M
o $ n Y X 07 !” ?kX <4 #$% 1
. 789 D$!8 ‘I( 0 7 !” != p> 9G 3( !” Y $ Y n n X) 4 ‘ ‘1 *0 ’19G !1< 789 q $ Y n 07 !” !1 ‘I( ! JL .(o B 3( ? kX <4 #$% 1 r(6
!” / s0 q 7 !” ! 4 ‘ !”
.> $% n $ Y 07
3 07 !” &*% 7!0 : ,* -/
‘I( B D$!8 3( / ’19G ! 4
. $ DI) EA 3 ` 4 ‘H !1 07 !” &*% I / / ! Jh !
B1 ={C1,C2}0&*% #T 3(
3( 4 B3 ={C2,C3}$ B2 ={C1,C3}
‘)$% 1 94 \Z h != 9 0 !” DI)
74 = O)!) C3$C2 C107 !” M #$% C& >U& ) 0P C$ 3( B m& 4
3( !0 )’* % 9P s0 $ (C3$ C1 .4 94 9G #T

> )(& #$% 1 / – : 01 ‘ !” ’19G M ‘I ‘$ – *%
U $L `0 S* U 1 – ! l!I) .4
.M ‘ > (Y) B
m
0 ≤ ≤U ∑W i (Y)
i =1

‘)$% 1 I) > )(& 0 : CAP 23 / t ‘ >IK$ !9 .4 (U) – !9, !1 #(& .4( !” B ‘I( s0 0’ > ‘= ? 1 !9 QVT J
C% 3 f – >( 07 !” M
.4 ! >( !9, `!) $

CAP .
aP 6 3 >$V D!A CAP ‘%M )’ 4 ‘ N!6 ‘UT 9 0 &
! PDM -$ [q] $ `U .[n] > 7! ‘$ # x ! ‘ N!B 0 / () ‘4$ [{] H*0 .!’ #T M ’09 $ 0/ ( !v $ J*9L w!) M 0′ RFRM C I) ! & 0 < 4 ‘ 0 / () -$ >V) $ .4’ 789 / J*9L B ‘ iV 0/ >$ I) !1 0I ‘TP $ < p/ l, >U F $ / J!9 >U F C ‘4$ H [|]9 .0 ‘* 0I J*& }) (! > 7! ,G١٨’)G () x ! 0/ -$ $ .4 ‘ 9 > UB C8 wz $ 7! () 6 !v $ J*9L
789 ‘ () ‘ 9 ! ‘)G !v 0!
. ‘ `<L 0/ 0/ () ! CAP 789 0*G x ! 0/ 4P $ 07 !” `<L 4’ !(P d) (0″+,) / !(P ‘0$! UV) $ () ! .4 ‘ 3 / 7!(P !0 6 !1 !2 / !UV) ) .> $ b”+) $ !%) !1 4 ‘ ‘$ – 74 N!B 0/ a”P ‘8U9+ 0*G (J<<) !v $ H0 !v ‘ !v) / !v / J*9L
! 7!(P !0 .7!c $ / l, >U F / J!9 >U F
>( ‘$ – 0*G / !0 P S x
!0 7!(P !0 UV) ‘UT S+ & .0’ OF 74 ‘4 0/ / 0 *G / ‘ >( ‘$ 0 4P $ 7! 9 ’04P [ f ‘$ – !0 > !u C[ .0
.(/ ) !8T \Z h) 4 ‘0 L$ x / >V)
.4’ (V (n) B 4P / ‘ ‘$ –

Wc =Ws ×Wa|s ×Wc|a|s ()

, WS C c 4P ‘ ‘$ – !1 Wc (n) B *G ‘$ – !1 Wa|s C s 7!(P ‘$ – 70
‘$ – 70 , Wc|a|s $ C s 7!(P !2 C a /
C s x4 !2 $ C a *G x ! > C c 4P
.> 74 N!B

Precedence Diagramming Method (PDM)
Risk Filtering, Ranking, and Management (RFRM)
Pareto ranking technique
1268732040128

Downloaded from ijiepm.iust.ac.ir at 14:23 IRST on Saturday November 4th 2017

Downloaded from ijiepm.iust.ac.ir at 14:23 IRST on Saturday November 4th 2017

Clustering
4 ! !2 :?@) *A/ # 7 !” & #IBF ! iV $ 3( & #[M
0JU 7$! /)*4 `!) ! CAP ? )’ .>A! /*

CAP .
HM 0-$ > / >! V !9, rA) 07 ! 9 0 ‘* 0 -$ !) ! !G / ‘8 [Z *I 9 0 $!K / ‘* HM ! ! ‘+) rUI9 H ‘+) 0 7 ‘A!6 p9 x!9 O 7R$!G ! > <* $ 9 0 94f 0 7R$!G () 0H !9* $ !) ! !G ‘< .[n]4(
!v $ J*9L w!) 789 ‘8 HM >V) 0 /
.[j]> /
x / !v $ J*9L 0*G w!) Y <4 r B w!) I $ 74 ‘ 0!y9 !v $ J*9L O L ! 0/ .0’ <,) 9A! !F M L O L ! $ 9A! !F w!)
J!A ‘*K 6 /<) 3F$ .4’ ()
. ‘ 789 / >*0 QB I) ! (j) I9

* = (j)

285001-97782



قیمت: تومان


دیدگاهتان را بنویسید