*)/*. !+- ,&)*$ ( ,&’ % ,$ “# , !

USING ORTHOGONAL PIECEWISE CONSTANT BASIS FUNCTIONS IN SHAMIR THRESHOLD SCHEME

Kh. Maleknezhad, M. Shahrezaee & M. Falah. Aliabadi

Iran University of Science and Technology, [email protected]

Abstract: In Shamir threshold scheme one that is called dealer, chooses the key and then shares some partial information about it, called among the participants, secretly. In this paper, we use some numerical methods with piecewise constant basis functions in Shamir threshold scheme. We first introduce operational matrix of this functions and then show how dealer multiplies this matrix by vector of shares to obtain a new vector and distributes it.

!”
(shamir)

!

! ” # (shamir) : ,’ – %& ‘* /0 1 2 . $ %& ‘* + ,’ – ‘-$ 678′ %09 $”” :” $’;<& .[5″4] . &” $33 ” $ %- # D D E [C] & =%> [email protected] :” 2& ” A3B $” & ! ” G D 8 H678′ %09 $” :” D9 0 @8 .F !I J $%> K D9 ” D #3 L + ‘> $Q $ ! ” .3$ I P ” $ @ & [O”N] FM
# – F $ .R I ” P # – K ” D- ST DA” .F7 UJ Q DA” VW ” X, %-

=Y09 H$” HFM !I J H$E3; H<; H; :
” R [email protected]_^Y $ 3 %& .F
_(t,w) :” @8 .[O] – D `@” ” [email protected]_^Y $# 0 K\ H $ D a0
D9 H]’ /%> 7
. RP aE

.
_(t,w) + Ht ≤ w” ‘ F1c a2d > w ” t ‘- b# w >, k %- + ‘ 6 $” t R – 2 ($ D E p -) F 678’

.
Q [email protected] (PCBF) FM !I J D9 X” > ” ‘$ [\ ]’ RK

/ / :
// :

[email protected] .(,)!”# $% &’% $ ()*% !”#$ %& / ‘() !*+ ,-. 012
!”#

” P( )x 1 2 .a0 = k ” ‘@, at−1 a0$!P =B D< ZW :” $ Yk c H &” $9%T $!P =B D< ZW 6 87 R:” * – D9
$ H B (n3 1 ) k17 =%>
Zc $” R:” $P P( )x %& ‘* /0 1 2
. [5″4] – D9 A3B $” $ ” :” D9 – F D D E [C] .F #d “8 =%> L 678’ %09 (1≤ k ≤ t) – (xik ,P(xik )= yik ) &” b”9 :”
1099797545362

: q ” P[xit ,xit−1,…,xi1]=P[xit ,…,xi2x]i−t−xPi1[xit−1,…,xi1] (5_4)

$78 $%09 %& ‘* [r] F t 1 678′ Z09 : $ P
Pn( )x = yi1 +(x− xi1)P[xi2,xi1]+…+
( )( 2 ) ( t 1) [ t t 1 ] (N_4) x− xi1 x− xi … x− xi − P xi ,xi − ,…,xi1

$ 1 2 k %- D I x =0HN_4 3 H’- .3
PCBF . 3 6 – { }

>,
<θi ( )t ,θj ( )t >= ⎧⎨0i ≠ j
⎩1i = j
D< H J Q 67 θi 3
` f ( )

=d 6$ f ( )t ∈L2R
i=1
. fi =<f,θi >- 6R FM !I $ Rθi ” [0,1)W” D tz 6 ‘- b#
H6’- ST i =1,2,…,m – ⎡⎢⎣im−1,

mi ⎞⎟⎠D R
.63 PCBF >,
ER 6 $ H @! z∈[a,b)D @7 3 _Dg1 : 6′- Z1 t∈[0,T)D X @7

t = bz −− aaτ

H6R $ PCBF ” <%> I F7I . [O”N] $ =h;&

( t _4) $R”3 eR ” F k 8 ‘ fgT $Q K .’R , – ‘
.’-$ ST $ D (dealer) ! ” –
11826291270380

.D∉P – $ b# ” 6R $ E D fgT R H’- 678 P k %- RP$ D $I” $ D ”6 “ – $h;& =>Y 8 eR – $9T R 6 .R$ igT >, + k . jY < 6 ‘RP 6R ” ER 6 (Q⊆P)Q ‘ I R D< Q ≥ t 3 .’ K %- FU3
167602430272

.’1 k 1 2 I R Q <t3 [email protected]” ‘ k 1 2
: ‘1> $ I” D9 @8 – $
P ={Pi :1≤i ≤ w} w HP >,
Q R%- >, HK >,
Q R6 >, HS >, ” P≥w+1 ” F X” > + P – k = z p 6’-$ b# ‘- m1 D ‘- RP Z p g’> + %- D< HS = Zp
:J$ R6 6<@ H’- $ ST z p ;, 9d n g’> W HD (4
R D H1≤ i ≤ w .6 R$ ` (1≤ i ≤ w)xi ‘ $ R R xi ) R $ pi + xi 8
(‘
t_4$#g = d ( k∈zp) k %- 67 8 D (5
.’- $ ST 9T z p a1,…,at−1g’>
:- ‘- $ 1 2 (1≤ i ≤ w), yi = p( )xi 8 D (N
P( )x = K +∑t−1ai x j (mod p)
j=1
.R $ Pi yi 6 D,1≤ I ≤ w (O

‘* + (D )! ” H – $ DRE o ‘ =d F t_4& c-W – P( )x ‘ %& R ” F %- R FM %& – $ $#g
.3 $ m% %& ‘* (xi , yi )p” + Pi t Q >, + <* 6 6RP $ ‘-
Pi1 ,….,Pit : ‘- b# . k %- ‘$
– ‘ $ ”- J k %- ‘RT zp[ ]x %& ‘* + P( )

, yi j = p(xi j )
* ( $ D G8# ” F $9T %& ‘* ) .F
=d $ P( )x KJ F t_4& c-W P( )x : F

P( )x = a0 +a1x+a2x2 +…+at−1xt−1 (4_4)
#$ (shamir) !”
PCBF .
” D- R H4_4 %& ‘* D9 ! ” K F F A K\ .’-$ DPt A ‘ ‘-$ S0 $#g PCBF $Q $%> – ‘-$ Z1 E B K\ . F B ` D2 .D D ` p J [email protected] ” F7I pP HF E> =d – > a2d F7I 0 . $ p @” > 678 DI E> F7I
R [email protected] .6 $ – x− ZdW $9’ > ! ” .$ D I P yij =d P
– $Q P # – K
# $ DA” .R $ I 6 $ DA”
. 2& < – 8 L –
– 6R$ E Xc ‘* /@I F7I
.’ ; %- HP R 6 D9 ‘ $ <*

.
D9 [O”N] [email protected]_^Y $%> K RX c
:$ q =d K .F D

EB

m∑−1Δi ⎤=

1 ( +Δ)( −Δ)−1 m⎣2 i=1 ⎦ 2m
: –
⎡0I(m−1)(m−1)⎤
Δm×m = ⎢⎥
⎣00⎦

Δi =0(i ≥ m) :”

.(1≤i ≤5)xi =i ” w=5 Ht=3 H p=11 ‘- b # _4 X c 6R ” ER 6 Q={P1,P3,P5} ‘- b# ‘uR :6 KJ 1/1,2/2−,3/9 : ‘1> / – ‘ U3
yi1 =1/1yi2 =2/2− yi3 =3/9

> $R D 67 H k %- #
:6E=[1/1,2/2−,3/9]T $’ H6′- $ Z1

B=[12,−24,42]T

$ D9 3×3 [email protected] _^Y $%> K +’ .’ F $I” 6′-

H f ( )t = k FM $88W + : .
:F =d PCBF
m
k ≈ k∑θi ( )t
i=1
: #
k = k(kk …k ) ( )θ t

:() .
D< c( )t = f ( )t ± g( )t 3
c = f ± g

c = [c1,c2,…, cm ]T ci =< c( )t ,θi ( )t > f = [f1, f2,…, fm ]
g = [g1, g2,…, g m ]

:() .
D< c( )t = f ( ) ( )t g t 3
c = f ⊗ g
: g( )t ≠0>t∈tz 3 ” c( )t = f ( )t

g( )t c = f ÷ g

$88W @Q + + 3 : . :6 D S0
kf ( )t ≈∑m (kfi ) ( )θi t = k∑m fiθi ( )t
i=1i=1
: # kf ( )t = kFTθ( )t

:< L “” X< : t # $” %& ‘*+” .!

tz
: 6 f ( )t = FTθ( )t 3

” 63$ X< θ( )t $ V> – R XW
:6 XW 6R $ G7 D” {θi ( )t } ,

$%> K ” F UJ [Q FM K + E –
.F s”

!”#
1011011356645

411315356645

1601940356645

” A =[1,3,17,0,21,4,8,20]T KJ
2192496477268

1011011251936

1601940251936

,,
yi∗5=21,,,

k X, %- x =0 I N_4 ” 5_4 G” ‘-
: F 6RP ” $ k=16

.
– ! ” HRPCBF j’ [email protected] H- & m KJ HF RP T $% > K
. $ `;# H @” F17 <; 67 F’ $ ! ” H U3″ [email protected] ‘uR HDA” $%> K I P & K R F%I *) R ” K + ‘ ZI + ” K – F R PCBF $%>
6RP ; $& #d =>Y X1 ‘ (.F
.F

Shamir, A., How to share a secret, comm. Of the ACM 22 1979, 612-613.

CRYPTOGRAPHY Theory and Practice, Douglas R.
Stinson, University of Nebraska, 1995, Lincoln.

Ganti, Trasada Rao, Piecewise constant orthogonal functions and their application to system and control, 1983, Stringer-Verlag.

Razzaghi, M., Nazarzadeh, J., Walsh functions, Wiley encyclopedia of electrical and electronics in engineering, 23, 1990, 429-440.

⎡1⎤

11 ⎥
482404130358

1093916130358

31 ⎢⎢⎢02211 ⎥⎥⎥⎡⎢⎢12−24⎤⎥⎥ = ⎡⎢⎢108 ⎤⎥⎥
⎢1⎥⎢⎣42 ⎥⎦⎢⎣7 ⎥⎦
⎢00


⎢⎣2⎥⎦

:6 ‘
yi*1 =8y y

:6 xi3 =5 , xi2 =3 , xi1 =1 ” 5_4! ‘-
p[xi2,xi1]=1 , p

! ”
647702-170095 pn( )( )

:6x=0 I K= − + − − =8 1 9 1( )( 3) 1 mod( 11)

‘- b# _5Xc
‘- b# ‘uR . (1≤i ≤10)xi =i2 ,w=8 , t =5, p =11
6R ” ER 6 I Q={P1,P2,P3,P6,P7,P8,P9,P10} 6 3 .’ k X, %- ‘RT

x1=1 , x2=4 , x6=13 x7=3 , x9=12, x10=8 ,
yi2=28/12− yi3=18/18 yi5=7/15− yi6=19/11 yi8=13/21 x4=16 x8=18,
yi1=27/3 yi4=6/22− yi7=22/6−

> $R D 67 Hk %- # :F 6RP H6’- $ Z1
B=[624,−656,432,−160,−176,448,−512,320]T
3629994546913 D9 8×8 [email protected] J– ^Y $ %> K + ‘
A.C., Prindle, weber and Schmidt, 1978, Boston, Masschvsetts. ⎡1

1 1 1 : F $I” 6’-$

1111⎥
[5] Numerical Analylis, Burden, R.L., Faires, T.D., Reynolds,

3622374102146 ⎢⎢⎥⎥
!” . . . []⎢111⎥
362237462009⎢⎥⎡624 ⎤ ⎡31⎤
# 0%” %” (shamir) #$% &!”‘ ( )*+ , ,#⎢⎢111⎥⎥⎢⎢−656⎥⎥ ⎢⎢3 ⎥⎥
36223742284236223742068803531329178557

.7897 1! ,2 3) ” 4) 1 5618⎢⎢⎢⎢1111⎥⎥⎥⎥⎢⎢⎢⎢432−−160176⎥⎥⎥⎥=⎢⎢⎢⎢17021⎥⎥⎥⎥
⎢111⎥⎢⎥ ⎢ ⎥
4746722104270⎢⎥⎢448 ⎥ ⎢4 ⎥
⎢⎢00⎥⎥⎢⎢−512⎥⎥ ⎢⎢8 ⎥⎥
000
⎢⎥⎢⎣320 ⎥⎦ ⎢⎣20⎥⎦
⎢⎥
⎢00000⎥
⎢⎥
519669155073

⎢0000000⎥
⎣2⎦



قیمت: تومان


دیدگاهتان را بنویسید